Chapter - 22 Chemical Coordination and # Integration ### **Points To Remember** **Endocrine glands:** These are ductless glands which secrete hormones directly into the blood stream. **Hormones:** Non-nutrient chemical, synthesised in trace amounts, acts as intracellular messengers and are specific in their action. ### **Hypothalamus:** - It is basal part of diencephalon. - Has neurosecretory cells called nuclei which produce hormones to regulate the synthesis and secretion of pituitary gland hormones. - Two types of hormones released are: **Releasing hormones:** Simulate secretion of pituitary hormones, e.g., Gonadotropin releasing hormone stimulates pituitary gland to synmesise gonadotrophins. **Inhibiting hormones:** Inhibit secretions of pituitary hormones, e.g., Somatostatin inhibits secretion of growth hormone. # **Pituitary Gland:** - Located in bony cavity called as sella tursica. - Attached to hypothalamus by a stalk. - Divided anatomically into: Adenohypophysis and Neurohypophysis. - Hormones released from hypothalamic neurons reach anterior pituitary through portal system. - Posterior pituitary is under neural control of hypothalamus. Biology Class - 11 ### 1. Pituitary Gland # Adenohypophysis: - **Growth hormone (GH):** Oversecretion leads to gigantism and low secretion causes dwarfism. - **Prolactin (PRL)**: Growth of mammary gland and formation of milk in them. - Thyroid stimulating hormone (TSH): Stimulates synthesis and secretion of thyroid hormones from thyroid gland. - Adrenocorticoirophic hormone (ACTH): Stimulates synthesis and secretion of steroid hormones called glucocorticoids from adrenal cortex. - Luteinizing hormone (LH): Synthesis and secretion of hormones called androgens in males, and helps in ovulation and maintenance of corpus luteum in females. - Follicle stimulating hormone (FSH): Regulate spermatogenesis in males, and growth and development of ovarian follicles in females. - Oxytocin helps in contraction of uterus during child birth and milk ejection from mammary gland in females. - Vasopressin: Acts on kidney and stimulates reabsorption of water and electrolytes by distal tubules to reduce water loss through urine. It is also called as Anti Diuretic Hormone (ADH). - Acrommegaly: It is a condition when the pituitary gland makes too much growth hormone. It is due to a tumour in pituitary gland. Person suffering from acromegaly (acro means tip and megaly means means enlargement) may gradually develop a long face with protruding lower law, enlarged nose and wider spacing between teeth and enlarged hands and feet. ### 2. Pineal Gland: Located on dorsal side of forebrain. • Secretes Melatonin to regulation 24-hours rhythm, sleep-wake cycle, menstrual cycle, pigmentation etc. ### 3. Thyroid Gland: - Has two lobes on either side of trachea interconnected by isthmus (connective tissue). - Composed of follicles and stromal tissues. - Follicular cells synthesis thyroxine (T_4) and tri-iodothyronine (T_3) . - Iodine is necessary for normal functioning in of thyroid. - **Goitre (Hypothyroidism):** Enlargement of thyroid gland; Hypothyroidism may lead to mental retardation and stunted growth (cretinism) Deaf-mutism in the baby if it occurs during pregnancy. - **Hyperthyroidism**: Occurs due to cancer or due to development of nodules in thyroid glands. Effects body physiology as abnormal high levels of thyroid hormones is synthesised. Basic metabolic rate increase. - Exophthalmic goitre: It is a form of hyperthyroidism, characterised by enlargement of thyroid gland, protrusion of eye balls and increased BMR - Thyroid hormone controls protein, carbohydrate metabolism. - Also secretes a protein hormone called Thyrocalcitonin (TCT) which regulates blood calcium level. ### 4. Parathyroid Gland: - Present on back side of thyroid gland. Each lobe of thyroid gland has its one pair. - Secrete peptide hormone called parathyroid hormone (PTH) which increases calcium levels in blood so called **hypercalcemia** hormone. - PTH stimulates bone resorption, and reabsorption of calcium from blood and reabsorption of calcium by renal tubules, thus increasing blood Ca⁺⁺ level. ### 5. Thymus Gland - Located on dorsal side of heart and aorta. - Secrete peptide hormones called Thymosins which play role in differentiation of T-lymphocytes (help in cell mediated immunity.) - Thymosins also produce antibodies and provide humoral immunity. - Immunity of old people usually becomes weak as thymus gets degenerated with age. ### 6. Adrenal Gland - Located at anterior part of each kidney. - Has centrally located adrenal medulla and at periphery in adrenal cortex. - Adrenal medulla secretes adrenaline (epinephrine) and nor adrenaline (norepinephrine), commonly called as catecholamines or emergency hormones or hormones of fight or flight. - These hormones increase heart beat, rate of respiration, breakdown of glycogen thus increase blood glucose level, breakdown of lipids and protein, alertness, raising of hairs, sweating etc. - Adrenal Cortex-(3 layers) : Zona reticularis (inner layer) Zona fasciculata (middle layer) Zona glomerulosa (outer layer) - Adrenal cortex secretes : - 1. Androgenic steroids: - Secreted in small amounts. - Play role in growth of axial pubic and facial hair during puberty. ### 2. Glucocorticoids: - Involved in carbohydrate metabolism. - Stimulates gluconeogenesis, lipolysis and proteolysis. - e.g., Cortisol which is also involved in cardio-vascular and kidney functions. - It also suppresses immune response and stimulates RBC production. ### 3. Mineralocorticoids: - Regulate balance of water and electrolytes in body. - *e.g.*, Aldosterone which also helps in reabsorption of NA⁺ and water excretion of K⁺ and phosphates ions from renal tubules. - When adrenal cartex is damaged, it does not produce enough cortisols (which regulate body's reaction to stressful situations) and aldosterone. - It result in Addison's disease. Symptons of addison's disease are weak muscles, extreme fatigue, increased skin pigmentation, weight loss, sores in mouth and depression. # Two major causes: - 1. Primary adrenal insufficiency where our immunity system mistakes adrenal for an antigen and tries to damage it. - 2. Secondary adrenal insufficiency-when pituitary gland can't produce ACTH ### 7. Pancreas: - Has both exocrine and endocrine function. - Contains about 1-2 million islets of Langerhans which has glucagon secreting α -cells and insulin secreting β -cell. - **Glucagon**: Peptide hormone, stimulates glycogenolysis by acting on liver cells. Also, stimulates gluconeogenesis. Hence called hyperglycemic hormone. - **Insulin**: Peptide hormone, acts on hepatocytes and adipocytes to enhance cellular glucose uptake, stimulates conversion of glucose to glycogen (glycogenesis), so decrease blood glucose level called hypoglycemic hormone. - Deficiency of insulin causes diabetes mellitus in which loss of glucose occurs through urine. Excessive hunger and thirst (polydipsia) are other symptoms of Diabetes. **Glycogenolysis**: Breaking of glycogen into glucose. **Gluconeogenesis:** Formation of glucose from substances other than glycogen. **Glycogenesis**: Conversion of glucose into glycogen. ### 8. Testis: - A pair of testis composed of seminiferous tubules and interstilial cells is present in the scrotal sac of males. - Leydig cells (interstitial cells) produce androgens (mainly testosterone) which regulate development and maturation of male accessory sex organs, formation of secondary sex characters and play stimulatory role in spermatogenesis. Male sexual behaviour (libido) is influenced by androgens. **Ovary:** A pair of ovaries which produce one ovum in each menstrual cycle are present in abdomen in females. - Ovary composed of ovarian follicles and stromal tissue. - Estrogen synthesised by growing ovarian follicles helps in stimulation of growth of female secondary sex organs, female behaviour, mammary gland development and female secondary sex characters. - Ruptured follicle form corpus luteum which secretes progesterone. Progesterone supports pregnancy and stimulates alveoli formation and milk secretion in mammory glands. # Hormones secreted by tissues which are not endocrine glands: - (a) Heart: Atrial wall secrets Atrial Natriuretic factor (ANF) which decreases blood pressure by dilation of the blood vessels. - **(b) Kidney**: Juxtaglomerular cells secretes erythropoietin which stimulates erythropoiesis (RBC formation). - (c) Gastro-intestinal tract: it secrets four peptide hormones. - Gastrin: Acts on gastric glands and stimulates secretion of hydrochloric acid and pepsinogen. - Secretin: Acts on pancreas and stimulates secretion of water and bicarbonation. - Cholecystokinin (CCK): Act on pancreas and gall bladder to stimulate secretion of pancreatic juice and bile juice respectively. Gastric inhibitory peptide (GIP): Inhibits gastric secretion and motility. **Mechanism of hormone action :** By hormone receptors of two kinds, *i.e.*, ### (a) Located on membrane of target cell - These are membrane bound receptors. - From hormone receptor complex. Leads to biochemical changes in tissue. Release of second messengers like (cyclic AMP, IP₃, Ca²⁺ etc.) which regulate cellular metabolism. ### (b) Located inside the target cell - These are intra cellular receptors. - Hormones (steroid hormones iodothyronines etc.) interact with them and cause physiological and developmental effects of regulating gene expression. ### **Very Short Answer Questions** (1 mark each) - 1. Which two system Coordinate and regulate physiological functions of our body ? - 2. What is the role of melanocyte stimulating hormone? - 3. Name the hormones which act antagonistically in order to regulate calcium levels in the blood. - 4. Give the names of any one glucocorticoid and one mineralocorticoid. - 5. How does artrial natriuretic factor decreases blood pressure? - 6. Which structure is formed from ruptured follicle infemales? What is its role? - 7. Immunity of old persons becomes very week. Give reason. Chemical Coordination and Integration ### **Short Answer Questions-I** ### (2 marks each) - 8. What happens if a person suffers from prolonged hyperglycemia? - 9. What are the two modes through which the hypothalamus causes the release of hormones by pituitary gland? - 10. Androgen regulated the development, maturation and other important functions in human male. List them. - 11. Mr. Akshay notices that his shoe size has progressively increased. He also observes that shape of his face has gradually changing with protruding lower jaw. What can be the cause for all changes. Name the disorder. ### **Short Answer Questions-II** (3 marks each) - 12. Define hormone and classify them on basis of their chemical nature. - 13. How do oxytocin, progesterone and estrogen differ from each other? - 14. What are the disorders caused and the effects produced due to malfunctioning/improper secretion from thyroid gland? - 15. Name the disease/disorder caused by: - (a) Excessive secretion of Thyroid harmone in adults - (b) Insufficient amount of insulin secreted by pancreas - (c) Damage of adrenal cortex. # **Long Answer Questions** (5 mark each) 16. 'The master gland regulates a number of physiological functions in our body.' Give reasons and explain. # **Answers** # **Very Short Answers** (1 mark each) - 1. Nerual system and endocrine system. - 2. Acts on melanocytes and regulates pigmentation of skin. - 3. Thyrocalcitonin (TCT) and parathyroid hormone (PTH). - 4. Glucocorticoid—Cortisol; Mineralocorticoid—aldosterone. - 5. By dilation of the blood vessels. - 6. Corpus luteum which secrets progesterone. - 7. Thymus gland degenerates with age. 200 Biology Class - 11 ### **Short Answer Questions-I** ### (2 marks each) - 8. Gets affected by diabetes mellitus which causes loss of glucose through urine and formation of harmful ketone bodies. - 9. Through hypothalamic neurons control anterior pituitary gland. Through neural regulation controls posterior pituitary gland. - 10. Refer Points to Remember. - 11. Increased secretion of growth harmone Acromegaly ## **Short Answers Questions-II** (3 marks each) - 12. Refer Points to Remember and page no. 338, NCERT, Text Book of Biology for class XI. - 13. Oxytocin causes milk ejection and contraction of uterus at time of child birth. Progesterone—causes milk secretion and maintains pregnancy. Estrogen: Refer Points to Remember. - 14. Refer Points to Remember. - 15. (a) Expotthalmic goitre - (b) Diabetes - (c) Addison's disease # **Long Answers Questions-II** (3 mark each) 16. Explain the role of pituitary gland + Refer Points to Remember.