Study Materials

# NCERT Solutions for Class 12th Mathematics-I

Page 1 of 3

## Chapter 2. Inverse Trigonometric Functions

### Exercise 2.1

Exersise 2.1

Find the principal values of the following:

Ques.1.

Ans. Let

Since, the range of principal value of  is

hance, Principal value of  is

Ques.2.

Ans. Let

Since, range of the principal value of  is

hance, principal value of   is

Ques3.

Ans. Let

Since, the range of principal value of  is

hance, Principal value of   is

Ques.4.

Ans. Let

Since, the range of principal value of  is

hance, Principal value of   is

Ques.5.

Ans. Let

Since, the range of principal value of  is

hance,  Principal value of   is

Ques.6.

Ans. Let

Since, the range of principal value of  is

hance, Principal value of   is

Ques.7.

Ans. Let

Since, the range of principal value of  is

hance, Principal value of   is

Ques.8.

Ans. Let

Since, the range of principal value of  is

hance, Principal value of   is

Ques.9.

Ans. Let

Since, the range of principal value of  is

hance, Principal value of   is

Ques..10.

Ans. Let

Since, the range of principal value of  is

hance, Principal value of   is

Find the value of the following:

Ques.11.

Ans.

=

Ques.12.

Ans.

Ques.13. If   then:

A)

(B)

(C)

(D)

Ans. By definition of principal value for

hance, option (B) is correct.

Ques.14.   is equal to:

(A)

(B)

(C)

(D)

Ans.

hance, option (B) is correct.

Page 1 of 3

Chapter Contents: