Study Materials

NCERT Solutions for Class 10th Mathematics

 

Page 5 of 6

Chapter 6. त्रिभुज

प्रश्नावली 6.5

 

 

 

प्रश्नावली 6.5 


Q1. कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धरित कीजिए कि इनमें से कौन-कौन से त्रिभुज समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लंबाई भी लिखिए।

(i) 7 cm, 24 cm, 25 cm (ii) 3 cm, 8 cm, 6 cm

(iii) 50 cm, 80 cm, 100 cm (iv) 13 cm, 12 cm, 5 cm

हल :

(i) 7 cm, 24 cm, 25 cm

कर्ण2 = लंब2 + आधार2

252 = 72 + 242

625 = 49 + 576

625 = 625

चूँकि वायां पक्ष और दायां पक्ष बराबर है |

इसलिए ये भुजाएँ समकोण त्रिभुज की है |

अत: कर्ण = 25 cm (सबसे बड़ी भुजा कर्ण होती है )

(ii) 3 cm, 8 cm, 6 cm

हल: निम्न मानों को पाइथागोरस प्रमेय में रखने पर

कर्ण2 = लंब2 + आधार2

82 = 32 + 62

64 = 9 + 36

64 = 45

चूँकि वायां पक्ष और दायां पक्ष बराबर नहीं है |

इसलिए ये भुजाएँ समकोण त्रिभुज की नहीं है |

(iii) 50 cm, 80 cm, 100 cm

हल: निम्न मानों को पाइथागोरस प्रमेय में रखने पर

कर्ण2 = लंब2 + आधार2

1002 = 502 + 802

10000 = 2500 + 6400

10000 = 8900

चूँकि वायां पक्ष और दायां पक्ष बराबर नहीं है |

इसलिए ये भुजाएँ समकोण त्रिभुज की नहीं है |

(iv) 13 cm, 12 cm, 5 cm

हल: निम्न मानों को पाइथागोरस प्रमेय में रखने पर

कर्ण2 = लंब2 + आधार2

132 = 52 + 122

169 = 25 + 144

169 = 169

चूँकि वायां पक्ष और दायां पक्ष बराबर है |

इसलिए ये भुजाएँ समकोण त्रिभुज की है |

अत: कर्ण = 13 cm (सबसे बड़ी भुजा कर्ण होती है )

Q2. PQR एक समकोण त्रिभुज है जिसका कोण P समकोण है तथा QR पर बिंदु M इस प्रकार स्थित है कि  PM ⊥ QR है | दर्शाइए कि PM2 = QM . MR है |

हल:

दिया है : PQR एक समकोण त्रिभुज है

जिसका कोण P समकोण है तथा QR

पर बिंदु M इस प्रकार स्थित है कि  PM ⊥ QR है |

सिद्ध करना है : PM2 = QM . MR

प्रमाण : PM ⊥ QR दिया है |

इसलिए प्रमेय 6.7 से

ΔPMQ ~ ΔPRQ   ...... (1)

इसीप्रकार,

ΔPMR ~ ΔPRQ   ...... (1)

समीकरण (1) तथा (2) से

     ΔPMQ ~ ΔPMR 

Q3. आकृति 6.53 में ABD एक समकोण त्रिभुज है | जिसका कोण A समकोण है तथा AC BD है | दर्शाइए कि 

(i) AB2 = BC . BD

(ii) AC2 = BC . DC

(iii) AD2 = BD . CD

हल :

दिया है : ABD एक समकोण त्रिभुज है | जिसका कोण A समकोण है तथा AC ⊥ BD है |

सिद्ध करना है :

(i) AB2 = BC . BD

(ii) AC2 = BC . DC

(iii) AD2 = BD . CD

प्रमाण : (i) ABD एक समकोण त्रिभुज है और

AC ⊥ BD दिया है |

ΔABC ~ ΔABD ...... प्रमेय 6.7 

 

Q4. ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है | सिद्ध कीजिए कि AB2 = 2AC2 है |

हल :

दिया है : ABC एक समद्विबाहु त्रिभुज है

जिसका कोण C समकोण है |

सिद्ध करना है : AB2 = 2AC2

प्रमाण : ABC एक समद्विबाहु त्रिभुज है |

  AC = BC  .......... (i)

और ABC एक समकोण त्रिभुज है |

  पाइथागोरस प्रमेय से

      AB2 = BC2 + AC2

अथवा AB2 = AC2 + AC2  (समी० 1 से)

अथवा AB2 = 2AC2 Proved

Q5. ABC एक समद्विबाहु त्रिभुज है जिसमें AC = BC है | यदि AB2 = 2AC2 है, तो सिद्ध कीजिए कि ABC एक समकोण त्रिभुज है |

हल :

दिया है : ABC एक समद्विबाहु त्रिभुज है

जिसमें AC = BC है और  AB2 = 2AC2 है

सिद्ध करना है : ABC एक समकोण त्रिभुज है |

प्रमाण : AC = BC ....(1) दिया है

और   AB2 = 2AC2     ......... (दिया है)

अथवा AB2 = AC2 + AC2 

अथवा AB2 = BC2 + AC2  ( समी० 1 से )

अत: पाइथागोरस प्रमेय के विलोम (प्रमेय 6.9) से

ABC एक समकोण त्रिभुज है | Proved

Q6. एक समबाहु त्रिभुज ABC की भुजा 2a है। उसके प्रत्येक शीर्षलंब की लंबाई ज्ञात कीजिए।

हल : समबाहु त्रिभुज ABC की भुजा 2a है |

AB = BC = AC = 2a

रचना : AD ⊥ BC डाला |

अत: समकोण त्रिभुज ACD में

पाइथागोरस प्रमेय से,

AC2 = AD2 + DC2 

(2a)2 = AD2 + (a)2

4a2 = AD2 + a2

AD2 = 4a2 - a2

AD2 = 3a2

Q7. सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग उसके विकर्णों के वर्गों के योग के बराबर होता है।

हल:

दिया है : ABCD एक समचतुर्भुज है जिसकी

भुजाएँ AB, BC, CD तथा AD है | और विकर्ण

AC तथा BD एक दुसरे को O पर प्रतिच्छेद करते हैं |

सिद्ध करना है : AB2 + BC2 + CD2 + AD2 = AC2 + BD2

प्रमाण : समचतुर्भुज के विकर्ण एक दुसरे को समकोण पर समद्विभाजित करते हैं | इसलिए,

समकोण ΔAOB में पाइथागोरस प्रमेय से,

AB2 = AO2 + BO2  …………… (1)

इसीप्रकार ΔBOC, ΔCOD और ΔAOD में,

BC2 = CO2 + BO2  …………… (2)

CD2 = CO2 + DO2  …………… (3)

AD2 = AO2 + DO2  …………… (4)

समी० (1) (2) (3) और (4) जोड़ने पर

AB2+BC2+CD2+AD2=AO2+BO2+CO2+BO2+CO2+DO2+AO2+DO2 

RHS = 2AO2 + 2BO2 + 2CO2 + 2DO2

= 2(AO2 + BO2 + CO2 + DO2

Q8. आकृति में ΔABC के अभ्यंतर में स्थित कोई बिंदु O है तथा OD⊥ BC, OE⊥AC और OF⊥ AB है | 

दर्शाइए कि 

(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2

(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2

हल: ​

​दिया है : ΔABC के अभ्यंतर में स्थित कोई बिंदु O है तथा OD⊥ BC, OE⊥AC और OF⊥ AB है | 

सिद्ध करना है : 

(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2

(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2

प्रमाण: 

समकोण Δ AOF में, पाइथागोरस प्रमेय से 

OA2 = AF2 + OF2  ......................... (I) 

समकोण Δ BOD में, पाइथागोरस प्रमेय से 

OB2 = BD2 + OD2  ......................... (II) 

समकोण Δ COE में, पाइथागोरस प्रमेय से 

OC2 = CE2 + OE2  ......................... (III) 

समीकरण (I), (II) तथा (III) को जोड़ने पर 

OA2 + OB2 + OC2 = AF2 + OF2 + BD2 + OD+ CE2 + OE2

OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2  Proved I

अब, पुन: 

      OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2  

या  AF2 + BD2 + CEOA2 + OB2 + OC2 – OD2 – OE2 – OF2 

या  AF2 + BD2 + CE= (OA2 – OE2 ) + (OB2  – OF2 ) + (OC2 – OD2)

या AF2 + BD2 + CE2 = AE2 + CD2 + BF2  पाइथागोरस प्रमेय से

Q9. 

Q10. 

Q11. 

Q12. 

Q13. किसी त्रिभुज ABC जिसका कोण C समकोण है, की भुजाओं CA और CB पर क्रमश: बिंदु D औए E स्थित है |

सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है |  

Q14. किसी त्रिभुज ABC के शीर्ष A से BC पर डाला गया लंब BC को बिंदु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है |

सिद्ध कीजिए कि : 2AB2 = 2AC2 + BC2 है | 

Q16.  किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक  शीर्षलंब  के वर्ग के चार गुने के बराबर होता है |

 

 

 

Page 5 of 6

 

Chapter Contents: