Study Materials

NCERT Solutions for Class 10th Mathematics

 

Page 3 of 4

Chapter 1. वास्तविक संख्याएँ

प्रश्नावली 1.3

 

 

 

प्रश्नावली 1.3 


Q1. सिद्ध कीजिए कि √5 एक अपरिमेय संख्या है |

हल :

इसके विपरीत मान लीजिए कि √5 एक परिमेय संख्या है | 

हम किसी भी परिमेय संख्या को p/q के रूप में व्यक्त कर सकते है जहाँ p तथा q दो पूर्णांक है और q  ≠ 0 है | 

इसलिए, 

यहाँ 5 a2 को विभाजित करता है अत: 5 a को भी विभाजित करेगा | ....(1)

[ प्रमेय 1.3 द्वारा ]

अत: a = 5c माना      [ क्योंकि a 5 द्वारा विभाजित होता है अर्थात a का 5 कोई गुनाखंड है |]

 5b2 = a2 में a = 5c रखने पर

         5b2 = (5c)2

         5b2 = 25c2

            b2 = 5c2

यहाँ 5 b2 को विभाजित करता है अत: 5 b को भी विभाजित करेगा | ....(2)

[ प्रमेय 1.3 द्वारा ]

समीकरण (1) तथा (2) से हम पाते है कि 5 a तथा b दोनों को विभाजित करता है जिसमें 5 एक उभयनिष्ठ गुणनखंड है |

इससे हमारी इस तथ्य का विरोधाभास प्राप्त होता है कि a तथा b में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखंड नहीं है |

यह विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि

अत: √5 एक अपरिमेय संख्या है |

Q2.  सिद्ध कीजिए  कि 3 + 2√5 एक अपरिमेय संख्या है |

हल :

इसके विपरीत मान लीजिए कि 3 + 2√5 एक परिमेय संख्या है | 

हम किसी भी परिमेय संख्या को p/q के रूप में व्यक्त कर सकते है जहाँ p तथा q दो पूर्णांक है और q  ≠ 0 है | 

इसलिए,

और p तथा q को उभयनिष्ठ गुणनखंड से विभाजित कर एक सह-अभाज्य संख्या a तथा b प्राप्त कर सकते हैं | 

चूँकि a तथा b पूर्णांक है और 2 तथा 3 भी पूर्णांक है | 

इससे एक विरोधाभासी परिणाम प्राप्त होता है कि √5 परिमेय संख्या है |

ऐसा विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि 3 + 2√5 एक परिमेय संख्या है |

अत: 3 + 2√5 एक अपरिमेय संख्या है | 

यहाँ 2 b2 को विभाजित करता है अत: 2, b को भी विभाजित करेगा | ....(1)

[ प्रमेय 1.3 द्वारा ]

अत: b = 2c माना      [ क्योंकि a 5 द्वारा विभाजित होता है |

यहाँ 2 a2 को विभाजित करता है अत: 2 a को भी विभाजित करेगा | ....(2)

[ प्रमेय 1.3 द्वारा ]

समीकरण (1) तथा (2) से हम पाते है कि 2 a तथा b दोनों को विभाजित करता है जिसमें 2 एक उभयनिष्ठ गुणनखंड है |

इससे हमारी इस तथ्य का विरोधाभास प्राप्त होता है कि a तथा b में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखंड नहीं है, क्योंकि हमने a तथा b को सह-अभाज्य प्राप्त किया था |  

यह विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि 

 

 

 

Page 3 of 4

 

Chapter Contents: