Study Materials

NCERT Solutions for Class 10th Mathematics

 

Page 1 of 4

Chapter 1. वास्तविक संख्याएँ

प्रश्नावली 1.1

 

 

 

अभ्यास 1.1


प्र०1. युक्लिड विभाजन अल्गोरिथम के प्रयोग से HCF ज्ञात कीजिये |  

 (i) 135 और 225 (ii) 196 और 38220 (iii) 867 और 255

हल:  

(1)    135 और 225

a = 225, b = 135 {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

225 = 135 ×1 + 90

135 = 90 ×1 + 45

90 = 45 × 2 + 0 {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 45 {फिर उसमे से b का मान HCF होता है;}

HCF = 45

हल:

(ii)    196 और 38220

a = 38220, b = 196  {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

38220= 196 ×195 + 0  {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 196      {फिर उसमे से b का मान HCF होता है;}

HCF = 196

हल:

(iii)   867 और 255

a = 867, b = 255 {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

38220= 196 ×195 + 0 {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 196  {फिर उसमे से b का मान HCF होता है;}

HCF = 196

प्र०2. दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1, या 6q + 3, या 6q + 5, के रूप का होता है जहाँ q कोई पूर्णांक है |

हल:

दर्शाना है: a = 6q + 1, 6q+3 या  6q+5

माना कि a कोई धनात्मक विषम पूर्णांक है;  जहाँ b = 6 होगा,

जब हम 6 से a को विभाजित करते है जो शेषफल क्रमश: 0, 1, 2, 3, 4 और 5 पाते है;

जहाँ 0 ≤ r < b

यहाँ a एक विषम संख्या है इसलिए शेषफल भी विषम संख्या प्राप्त होता है |

शेषफल होगा 1 या 3 या 5 

युक्लिड विभाजन अल्गोरिथम के प्रयोग से हम पाते है;  

a = 6q + 1, 6q+3 या 6q+5

प्र०3. किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है | दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है | उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते है ?

हल:

स्तंभों की अधिकतम संख्या = HCF (616, 32)

a = 616, b = 32  {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

616 = 32 ×19 + 8  {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

32 = 8 × 4 + 0

b = 8 {b का मान HCF होता है}

HCF = 8

इसलिए स्तंभों की अधिकतम संख्या = 8

प्र०4. यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है |

हल :

दर्शाना है : a2 = 3m or 3m + 1

a = bq + r

माना कि a कोई धनात्मक पूर्णांक है जहाँ b = 3 और r = 0, 1, 2 क्योंकि 0 ≤ r < 3

तब a = 3q + r  कुछ पूर्णांक के लिए q ≥ 0

इसलिए, a = 3q + 0 or 3q + 1 or 3q + 2

अब हम पाते है;

a2 = (3q + 0)2 or (3q + 1)2 or (3q +2)2

a2 = 9q2 or 9q2 + 6q + 1 or 9q2 + 12q + 4

a2 = 9q2 or 9q2 + 6q + 1 or 9q2 + 12q + 3 + 1

a2 = 3(3q2) or 3(3q2 + 2q) + 1 or 3(3q2 + 4q + 1) + 1

यदि m = (3q2) or (3q2 + 2q)  or (3q2 + 4q + 1) हो तो

हम पाते है कि ;

a2 = 3m or 3m + 1 or 3m + 1

प्र०5. यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है |

हल:

माना, a कोई धनात्मक पूर्णांक है;

युकिल्ड विभाजन प्रमेयिका के प्रयोग से;

a = bq + r जहाँ; 0 ≤ r < b

b = 9 रखने पर

a = 9q + r जहाँ; 0 ≤ r < 9

जब r = 0 हो;

a = 9q + 0 = 9q

a3  = (9q)3 = 9(81q3) या 9m जहाँ m = 81q3

जब r = 1 हो

a = 9q + 1 

a3 = (9q + 1)3 = 9(81q3 + 27q2 + 3q) + 1

      = 9m + 1  जहाँ m = 81q3 + 27q2 + 3q

जब r = 2 हो तो

a = 9q + 2 

a3  = (9q + 2)3 = 9(81q3 + 54q2 + 12q) + 8

      = 9m + 2  जहाँ m = 81q3 + 54q2 + 12q

अत: किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है |  

 

Page 1 of 4

 

Chapter Contents: